
9/23/2008

1

Making Classes and Objects

Lecture 4

Object-Oriented Programming

Lecture 4 Object-Oriented Programming 2

Agenda

• A Complete Class example

• Declaring a Class

• Defining a Class

• Declaring Variables

• Constructors

• Declaring Constructors

• Comments

• Class with Other Classes as Objects example

• Syntax Explanation

• Object Relationships

• Representing Relationship in UML

• Readings

9/23/2008

2

Lecture 4 Object-Oriented Programming 3

A Complete Class
/**

* This is CircleCalculator Class that calculate

* the area and circumfarence of a given class

*/

public class CircleCalculator{

private final double PI ;

private double radius;

public CircleCalculator() //Constructor of the CircleCalculator Class

{

PI = 3.14159;

radius = 40.0;

}

public void printCircumfarence()

{

System.out.println(2*PI*radius);

return;

}

public void printArea()

{

System.out.println(2*PI*radius*radius);

return;

}

}

Lecture 4 Object-Oriented Programming 4

Declaring a Class
• Class declaration tells Java compiler that we are about to define a new

class
– i.e., we are “declaring” our intent to “define” a class that can be used as a

template to instantiate object instances

– a program must include at least one class definition

public class CircleCalculator

• Reserved word public indicates that anyone can create instance of
this class

• Reserved word class indicates to Java that we are going to define a
new class

• CircleCalculator is the name of the class
– named so because it is an application (or program) with circle calculations

9/23/2008

3

Lecture 4 Object-Oriented Programming 5

Defining a Class

• Class definition following a declaration tells Java compiler what it means to make

an instance of this class and how that instance will respond to messages
– thus, simply declaring a class is not enough

– we must also define what a class does (i.e., how it will fulfill its purpose)

• Curly braces, {}, indicate beginning and end of a logical block of code or “code
body:” in this case, a class definition

– represent difference between declaration and definition

– code written between curly braces is associated with class declared in front of them

public class CircleCalculator {

}

– this is an example of an empty code block. While this “nothing” or “null” code is legal,
i.e., syntactically correct, it compiles but does not do anything useful

• Java programs are composed of any number of class definitions
– in this respect, Java code is like a dictionary: “declaration” of concept, followed by its

definition

– no code can appear outside of a class definition

Lecture 4 Object-Oriented Programming 6

Declaring Variables

private final double PI ;

private double radius;

• These variables are declared inside the class

definition.

• Each instance of this class will have a copy

of these variables

9/23/2008

4

Lecture 4 Object-Oriented Programming 7

Constructors

• Now we need to have instances of our class to do

something useful

• Constructor is a special method that is called

whenever a class is instantiated (created)

– another object sends a message that calls a constructor

– A constructor is the first message an object receives and

cannot be called subsequently

– establishes initial state of properties for instance

Lecture 4 Object-Oriented Programming 8

Constructor (cont’d)

• If you do not define any constructors for
class, Java writes one for you

– called default constructor

– default constructor will initialize each instance
variable to its default value

– This is not a good idea

• ALWAYS write your own constructor for each class

• ALWAYS give each instance variable an initial
value

9/23/2008

5

Lecture 4 Object-Oriented Programming 9

Declaring Constructors

• We want to declare a constructor for our class:

public CircleCalculator() //Constructor of the
CircleCalculator Class

{

PI = 3.14159;

radius = 40.0;

}

• This is our first example of method declaration
– declares to compiler our intent to define a method

• Values of object variables are initialized here.

Lecture 4 Object-Oriented Programming 10

Declaring Constructors (cont’d)

• General syntax notes:
– public indicates that any other object can create an instance of this

class by calling its constructor

– CircleCalculator is the constructor’s name

– Parentheses with nothing inside of them, (), indicate that this method
takes no parameters

– (Parameters will be explained in a later lecture)

• Constructors have special syntax:
– must always have same name as class name

• Notice that the constructor is declared between curly braces
that define the class

– constructor is a special capability of a class

9/23/2008

6

Lecture 4 Object-Oriented Programming 11

Comments

/* ... */

– everything between /* and */ is a block comment
• useful for explaining specifics of classes

• the compiler ignores the text between the comments

• we comment to make the code more readable for ourselves

– the comment at the top of slide 2 is called a header
comment

• these appear at the top of a class

• they explain the purpose of a class

Lecture 4 Object-Oriented Programming 12

Comments (cont’d)

• Inline Comments

– everything on the same line after two forward
slashes // is a comment

– this is known as an inline comment

– describes important features in code

9/23/2008

7

Lecture 4 Object-Oriented Programming 13

Class with Other Classes as Objects
public class OOP_Car { // declare class

// start class definition by declare instance // variables
private Engine _engine;
private Door _driverDoor,

_passengerDoor;

private Wheel _frontDriverWheel,
_rearDriverWheel,
_frontPassengerWheel,
_rearPassengerWheel;

public OOP_Car() { // declare constructor

// construct the component objects
_engine = new Engine();
_driverDoor = new Door();
_passengerDoor = new Door();
_frontDriverWheel = new Wheel();
_rearDriverWheel = new Wheel();
_frontPassengerWheel = new Wheel();
_rearPassengerWheel = new Wheel();

} // end constructor for OOP_Car

Lecture 4 Object-Oriented Programming 14

Class with Other Classes as Objects

(cont’d)
// declare and define methods

public void moveForward() {
// code to move OOP_Car forward

}

public void moveBackward() {
// code to move OOP_Car backward

}

public void turnLeft() {
// code to turn OOP_Car left

}

public void turnRight() {
// code to turn OOP_Car right

}

} // end of class OOP_Car

9/23/2008

8

Lecture 4 Object-Oriented Programming 15

Syntax Explanation

private Engine _engine;

– declares an instance variable named _engine

of type Engine

– reserved word private
• indicates that instance variable will be available only

to methods within this class

• other objects do not have access to _engine

• thus, OOP_Car “encapsulates” its _engine

– remember, properties are objects themselves
• every object must be an instance of some class

• the class of an instance variable is called its type

which determines what messages can be sent to

this property

– name of instance variable is _engine

Lecture 4 Object-Oriented Programming 16

Syntax Explanation (cont’d)

private Door _driverDoor,

_passengerDoor;

– we can declare multiple instance variables of the same type by separating
them with commas

– _driverDoor and _passengerDoor are both instance variables of
type Door

public OOP_Car() {

– constructor for class OOP_Car

– remember: constructor is the first message sent to a newly created object

– must have the same identifier (name) as its class

– () makes it a method

9/23/2008

9

Lecture 4 Object-Oriented Programming 17

Syntax Explanation (cont’d)

_engine = new Engine();

– reserved word new tells Java to create a new instance

– equals sign, =, means variable on left side “gets,” or is assigned,
the value of the right side

– so the value of the instance variable _engine will become a new
instance of class Engine

• i.e., _engine “gets” a new Engine

– the most common use of constructors is to initialize instance
variables

• i.e., construct its initial state

• that’s just what we’re doing here!

Lecture 4 Object-Oriented Programming 18

Syntax Explanation (cont’d)

public void moveForward() {

– declares a method named moveForward

– reserved word public indicates this method is part

of the class’ public interface
• thus, any other object that knows about an instance of this class can send that instance a moveForward

message

– reserved word void indicates that this method does not return a result when called
• some methods return values to the calling

method

• constructor declaration does not include

return value

– moveForward is name of method
• convention: method names should start with lowercase letter, and all following words in method name

should be capitalized

– anything inside curly braces is part of method definition’s body

9/23/2008

10

Lecture 4 Object-Oriented Programming 19

Object Relationships

• In our description, we said the OOP_Car had an engine,

doors, and wheels; these are its components

• It can be said that the OOP_Car is composed of its engine,
doors, and wheels

• Containment is when one class is a component of the other

• How do you determine containment?
– class OOP_Car has an instance variable of type Engine

– class OOP_Car creates an instance of type Engine

– therefore, OOP_Car contains an Engine

Lecture 4 Object-Oriented Programming 20

Representing Relationship in UML

Engine
OOP_Car

_engine

9/23/2008

11

Lecture 4 Object-Oriented Programming 21

Object Relationships

• City contains and therefore constructs
– parks

– schools

– streets

– cars, e.g., OOP_Cars (hey, why not?)

• Therefore, City can call methods on
– parks

– schools

– streets

– OOP_Cars

• But, relationship is not symmetric!

• Park, School, Street and OOP_Car classes don’t automatically have
access to City -- i.e., they can’t call methods on City

• How can we provide OOP_Car with access to City?

Lecture 4 Object-Oriented Programming 22

Object Relationships

• Answer: Associate the OOP_Car with its City

• How do you determine the association relationship?
– we’ll add to class OOP_Car an instance variable of type City

– Since class OOP_Car doesn’t create an instance of type City,
City will not be contained by OOP_Car

– we say: class OOP_Car “knows about” City

– tune in next time to see how to set up an association (“knows
about”) relationship in Java

• How do we diagram association?

9/23/2008

12

Lecture 4 Object-Oriented Programming 23

Object Relationships

Demos.Car.OOP_Car

_city

Demos.Car.City

Lecture 4 Object-Oriented Programming 24

Object Relationships

• The OOP_Car has certain attributes

– color, size, position, etc.

• Attributes are properties that describe the OOP_Car

– we’ll add to class OOP_Car an instance variable of type Color

– OOP_Car is described by its Color

– this is different than “ is composed of ” relationship

– class OOP_Car doesn’t contain its Color, nor is it associated with it

– we say: Color is an attribute of class OOP_Car

– class OOP_Car may set its own Color or another class may call a
method on it to set its Color

– the actual color of the OOP_Car is an attribute, but it is also an instance
of the Color class

• all instance variables are instances!

9/23/2008

13

Lecture 4 Object-Oriented Programming 25

Representing Classes

• A rectangle is drawn to represent an

individual class schematically

– at the top is the class name

– the next section lists the properties of the class
(instance variable names are optional)

– below the properties are listed the capabilities
of the class

• note that the constructor is assumed and is not listed
under capabilities

Lecture 4 Object-Oriented Programming 26

A Class Representation

OOP_Car

Engine _engine

Door _driverDoor, _passengerDoor

Wheel _frontDriverWheel, _rearDriverWheel,

_frontPassengerWheel, _rearPassengerWheel

City _city

Color _color

moveForward

moveBackward

turnLeft

turnRight

9/23/2008

14

Lecture 4 Object-Oriented Programming 27

Class Diagram

• A class diagram shows how classes relate to other classes

– rectangles represent classes

– relationships between classes are shown

with lines

– important properties have their name

– with reference to class boxes representing

their type

– attributes have type and identifier (but don’t show references)

Lecture 4 Object-Oriented Programming 28

Class Diagram

OOP_Car

_city

_engine

Color _color

moveForward

moveBackward

turnLeft

turnRight

City

knows about

Engine

contains an

Note: Doors and
Wheels have been

elided for clarity

9/23/2008

15

Lecture 4 Object-Oriented Programming 29

Variables

• Variables in Java are like variables in math

– they hold a single reference to a value that can vary over time

– but they need to have a previously defined value to be used

• Remember OOP_Car? Creating an instance variable was done in two parts

1. declaration: private Engine _engine;

2. initialization: _engine = new Engine();

• What is value of _engine before step 2? What would happen if step 2 were omitted?

• Java gives all variables a default value of null

– i.e., it has no useful value

– null is another reserved word in Java

– it means a non-existent memory address

Lecture 4 Object-Oriented Programming 30

Assignment

• Assignment provides a way to change the value of variables
– replaces the current value of a variable with a new value

– example: _engine = new Engine();

– we say: _engine “gets” a new instance of class Engine

• As we’ve seen, equals sign, =, is Java’s syntax for assignment
– the variable on left side of equals “gets” value of right side

– not like equals in Math! (which denotes equality of left- and right-hand sides)

• Using = with new

– new calls the constructor of the class

– constructor creates a new instance of class

– new instance is the value assigned to variable

• Using = without new
– assigns from one value to another

– ex: _exteriorColor = _interiorColor;

– makes the exterior color have the same value as the interior color

9/23/2008

16

Lecture 4 Object-Oriented Programming 31

Calling Methods

• We know how to declare methods, but how do we call them? How can we send messages between

objects?

• Syntax is: <variableIdentifier>.<methodIdentifier>();

public class City {

private OOP_Car _15mobile;

public City() {

_15mobile = new OOP_Car();

_15mobile.moveForward();

}

}

• Sending a message (“calling moveForward on _15mobile”) causes the method’s code to be
executed

_15mobile.moveForward() is a method call
• _15mobile is the message’s receiver (the instance being told to move)

• dot (“.”) separates receiver from method name

• moveForward is the name of method to be sent

• () denotes parameters to the message

• more on parameters next lecture! woo hoo!

Lecture 4 Object-Oriented Programming 32

Calling Methods

• What if we want one method in a class to call another method in the same

class?

– let’s say we want the OOP_Car to have a turnAround() method

– we will want the turnAround() method to call the OOP_Car’s own
turnLeft() or turnRight() method twice

• In order for the current instance to be a receiver of message, we need a way to
refer to it

• Reserved word this is shorthand for “this instance”

– this allows an instance to send a message to itself

9/23/2008

17

Lecture 4 Object-Oriented Programming 33

this keyword

• Example of using this to call a method on the current instance of the class:

public void turnAround() {

this.turnLeft();

this.turnLeft();

}

this.turnLeft();

– tells the current class to execute the code in its turnLeft() method

– since calling your own methods is common, using this is optional but it makes your code
clearer

– this.turnLeft() and turnLeft() do the same thing

public void turnAround() {

turnLeft();

turnLeft();

}

• Now that we’ve seen how to call methods, let’s do something with the OOP_Car...

Lecture 4 Object-Oriented Programming 34

Readings

Book Name: Object-oriented Programming in JavaTM
Textbook

Author: Richard L. Halterman

Content: Chapter 4

Book Name: Object Oriented Programming in Java – A
Graphical Approach

Author: Kathryn E. Sanders & Andries van Dam

Content: Pages 17-39

9/23/2008

18

Lecture 4 Object-Oriented Programming 35

Acknowledgements

• While preparing this course I have greatly

benefited from the material developed by the

following people:

– Andy Van Dam (Brown University)

– Mark Sheldon (Wellesley College)

– Robert Sedgewick and Kevin Wayne (Princeton

University)

– Mark Guzdial and Barbara Ericsson (Georgia Tech)

– Richard Halterman (Southern Adventist University)

